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Analysis of correlations and search for evidence of deterministic chaos in rhythmic motor control
by the human brain
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We investigate rhythmic finger tapping in both the presence and the absence of a metronome. We examine
both the time intervals between taps and the time lags between the stimulus tones from the metronome and the
response taps by the subject. We analyze the correlations in these data sets, and we search for evidence of
deterministic chaos, as opposed to randomness, in the fluctuations.

PACS number~s!: 87.19.St, 87.19.Bb, 05.45.Tp, 05.45.Ac
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I. INTRODUCTION

Studies of patterns in rhythmic movement have held
special interest in neuroscience and the behavioral scie
because they allow insight into the mechanisms respons
for the emergence of temporal order in the central nerv
system and the ability to regulate complex movement
sensorimotor coordination. Although the brain is remarka
adept at producing stable rhythmicity in movement patte
over long periods of time, careful analysis of such time se
reveals the ubiquitous and puzzling presence of temp
fluctuations in the control of rhythmic movement@1#. For
example, complex temporal fluctuations can be observe
sequential stride-interval patterns@2#, finger-tapping periods
@3#, etc. In rhythmic synchronization tasks, the temporal flu
tuations in motor timing create ‘‘noisy’’ period and pha
relationships between the rhythmic stimulus and the mo
response@4,5#. These appearances of randomness or nois
the temporal domain are not limited to the motor system, b
rather, they appear to be a typical and intrinsic manifesta
of complex physical and biological systems@6#, and the
study of the nature of these fluctuations has been the focu
many research efforts@1,7–9#.

If we consider a model of the brain as a chaotic dynam
system with nonlinear dissipation@10#, we would expect
such a system to exhibit a certain amount of erratic fluct
tion. An understanding of the inherent properties of the
noise patterns would yield considerable insight into the
derlying control structure for the timing of rhythmic move
ment. A remarkable observation, which has not been
counted for sufficiently in purely statistical approaches@11#,
is how long-range periodic movement patterns are ma
tained and minuscule or even subliminal perceptual tim
adjustments are made with great speed and accuracy wit
system exhibiting strong stochastic properties@5,12#. Sto-
chasticity can impose limitations on modeling and pred
tion, and on understanding the operational measures
system’s behavior. However, much theoretical and empir
research has pointed out potential benefits of the presen
randomness as a critical prerequisite for the dynamical
tributes of brain and behavior function. For example, s
chasticity may sharpen signal detection~stochastic reso-
PRE 621063-651X/2000/62~2!/2597~11!/$15.00
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nance!, prevent entrapment in spurious states, and ind
phase trasitions which switch from one state to anot
@8,13,14#. Thus, the observed temporal fluctuations in tim
series of rhythmic movement may serve a control function
generating and maintaining rhythmicity, rather than simp
corrupting time stability. Another crucial question is wheth
the fluctuations are truly random or just the result of a de
ministic chaotic process.

Recent studies@2,7,15# have shown that stride-cycle fluc
tuations in gait show long-range power-law correlation
However, these correlations disappeared when stride patt
were cued by a metronome as an external time keeper.
presence of long-range correlations would suggest the p
ence of some deterministic process in tracking fluctuat
time patterns, but follow-up studies regarding the prese
and type of deterministic chaos have not been done for th
data. Furthermore, gait rhythmicity is believed to be driv
physiologically by central pattern generators, reticulospi
neural ensembles with oscillatory output, implying biolog
cally hard-wired rhythm control. In contrast, rhythmic pa
tern organization can also be achieved in a wide range
movements which are not linked to physiologically rhythm
neural control structures. As an example, for finger tapp
in the presence of a metronome, there is rapid adaptatio
changes in the metronome pattern, even when these cha
are below perception thresholds and well within the range
the variability of the tapping@5,12#.

The present study extends the analysis of gait rhythmi
to finger tapping, which involves arm movement and is re
resentative of a different neural control system for mo
rhythm. The basic experiment is described in Sec. II, and
analyze the presence of correlations in Sec. III. In Sec.
we then search for evidence of deterministic chaos as
source of the randomness in the temporal fluctuations.
nally, we summarize our results in Sec. V.

II. EXPERIMENT

The experiment examines the ability of the human br
to produce periodic arm movement. A periodic series
tones is generated in a set of headphones, and each su
attempts to tap her finger at the same instant as these to
2597 ©2000 The American Physical Society
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Each finger tap touches a hand-held electrode to a m
plate, and this allows the time of the tap to be recorded.
collect a set of data, we generate a series of tones, and
subject begins tapping the electrode against the metal p
The times, in milliseconds, of the tones and the taps
recorded, with the first tone occurring at timet50. The raw
data then consist of two columns of numbers, the times
the stimulus tones and times of the response taps.

Two versions of the experiment were performed. In t
first version, the periodic series of tones is present for
entire duration of the experiment. This version will be r
ferred to as the periodic-stimulus experiment. In the sec
version, only ten tones are generated, and the subject
attempts to continue tapping at this periodic rate with
having additional tones as a guide. This version will be
ferred to as the nonstimulus experiment. Each of these
experiments was performed for three different tone perio
250 ms, 500 ms, and 750 ms. Note that 250 ms is near
natural period for finger tapping in the absence of any ex
nal stimulus. While this natural period does vary a bit fro
person to person, it is generally about four taps per seco

The five subjects were female volunteers whose ages w
28.266.9 years. The subjects were healthy and had
known cognitive, perceptual, or neuromuscular disord
Each subject performed all six of the experiments in t
one-hour sessions. Each session was limited to one hou
as to reduce physical fatigue in the forearm and hands, an
reduce mental fatigue from listening to tones in headphon

III. ANALYSIS OF CORRELATIONS

When a subject first begins tapping her finger, it tak
several taps to establish a rhythm. Since we are not c

FIG. 1. Differenced time series for a periodic-stimulus expe
ment. The solid horizontal line at 250 ms indicates the tone per
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cerned with this transient behavior, we discard the first
data points from each data set. As the subject continue
tap, the time interval between taps tends to vary, and i
these variations that we wish to analyze. In particular, we
interested in the correlations between the variations for s
cessive time intervals.

From the raw data set$Ri ; i 51, . . . ,N% consisting of the
times of the individual taps, we form the differenced data
$Di ; i 51, . . . ,N21%, where

Di5Ri 112Ri ~1!

is the time interval between two successive taps. Figur
shows a typical differenced data set for a periodic-stimu
experiment with a tone period of 250 ms.

A. Method for analyzing variations in tapping interval

To analyze the correlations between successive time
tervals, we use detrending fluctuation analysis~DFA!, which
was developed by Hausdorfet al. @2# to analyze variations in
human gait. We begin by calculating the average tap inte
Davg and the deviation of each interval from this average

Davg5
1

N21 (
i 51

N21

Di , ~2!

DDi5Di2Davg. ~3!

We then form the integrated time series$I k ;k51, . . . ,
N22% by adding up the firstk deviationsDDi :

-
d.

FIG. 2. Integrated time series formed from the differenced d
set of Fig. 1.
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I k5(
i 51

k

DDi ~4!

~note thatI N2150!. Figure 2 shows the integrated time s
ries formed from the differenced data set of Fig. 1.

Next, we examine how well the integrated time ser
may be fit locally by linear functions. To do this, we divid
the horizontal axis into intervals of equal lengthn, and, for
each interval, we find the line which is the best fit to the d
~see Fig. 3!. We repeat this process for all interval siz
n53,4,5, . . . However, not all interval sizesn will divide
evenly into the numberN22 of data points. Therefore, whe
we divide the integrated time series into intervals, we
tempt to use only the first 120 of theN225128 data points.
For those values ofn that do not divide evenly into 120, w
then add back the first few data points that were remo
from the end of the data set, or we remove a few additio
data points, so that the interval sizen will divide evenly into
the number of data points used. However, if this proced
requires the number of data points used to differ from 120
more than 8, then that interval sizen is not used.

To measure the deviation of the integrated time se
from local linearity, we compute the vertical separationDk

(n)

between the data pointI k and the local best-fit line~as illus-
trated in Fig. 3!, and then we compute the rms average
these separations:

F~n!5A 1

N22 (
k51

N22

uDk
(n)u2. ~5!

FIG. 3. Least-square local linear fits to the integrated time se
of Fig. 2. The interval size ofn520 is indicated by the vertica
lines, and the lines through the data are the linear fits.
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Repeating this procedure for all interval sizesn53,4,5, . . .
yields a functionF(n) which measures the degree of loc
linearity over a time interval ofn taps @note thatF(n)50
unlessn>3, since a linear fit to fewer than three points mu
be perfect#. As the interval sizen increases, the linear fits
should become worse, soF(n) should increase. Assuming
power-law behaviorF(n);ng, the scaling exponentg may
be used to characterize the correlations in the data. Acc
ing to Hausdorfet al. @2#, a value ofg between 0.5 and 1.0
indicates persistent long-range correlations.

The exponentg is the slope of a plot of lnF(n) versus
ln n. Such a plot is shown in Fig. 4 for the integrated tim
series of Fig. 2. Note that this plot deviates from linearity
n becomes large. This is because of the presence of sh
range correlations, and we will discuss this point in mo
detail in Sec. III D. The procedure for determining the exte
of the linear region is also described there.

B. Results of the analysis

We begin by analyzing the periodic-stimulus experimen
where the periodic series of tones is present for the en
duration of each experiment. Each of the five subjects p
formed this experiment five times at each of three tone p
ods, 250 ms, 500 ms, and 750 ms. For each of these data
we calculated a scaling exponentgs j

(p) , where s51, . . . ,5
indicates the particular subject,p indicates the particular tone
period, andj 51, . . . ,5indicates one of the five experimen
for that particular subject and that particular period. We th
averagegs j

(p) over the five experiments to obtain

s
FIG. 4. lnF(n) versus lnn for the integrated time series show

in Fig. 2. The slope of the solid line is the scaling exponentg.
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gs
(p)5

1

5 (
j 51

5

gs j
(p) , ~6!

and we average this over all five subjects to determine
average scaling exponent for each periodp:

g (p)5
1

5 (
s51

5

gs
(p) . ~7!

Figure 5 shows the five values ofgs j
(p) for one particular

subjects and a period ofp5750 ms, as well as the averag
gs

(p) of these five values. Figure 6~a! shows the five values o
gs

(p) and their averageg (p) for each of the three periodsp.
Figure 6~b! shows the corresponding results for the no
stimulus experiments, where the periodic series of tone
stopped after only ten tones, and the subject attempts to
tinue tapping at this periodic rate without having addition
tones as a guide~remember that the first ten taps were co
sidered transient and discarded!. In the latter case, the subje
does tend to drift from the initial periodp, and Fig. 7 shows
a typical differenced data set for a nonstimulus experime
In this particular example, the drift is to shorter periods, b
overall, there did not appear to be any preference betw
drifting to longer or shorter periods.

Table I lists the six scaling exponentsg (p) for the two
types of experiment at each of the three periods. Each

FIG. 5. Plots of lnF(n) versus lnn for the five separate periodic
stimulus experiments for one particular subject and a period
p5750 ms. The slopes of the five best-fit lines are the five sca
exponentsgs j

(p) , and the average of these five slopesgs
(p) is indi-

cated by the dark line above the five plots.
n

-
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n-
l
-

t.
t,
en

e-

ported uncertainty is the standard deviation of the five val
gs

(p) that were averaged to obtain that particular scaling
ponentg (p).

We first note that, for a period of 250 ms, the value ofg

f
g

FIG. 6. Scaling exponentsg for the three periodsp for the ~a!
periodic-stimulus and~b! nonstimulus experiments. For each p
riod, the open circles are the values ofgs

(p) for the five subjects, and
the filled circle is the averageg (p) of the five valuesgs

(p) .

FIG. 7. Differenced time series for a nonstimulus experime
The solid horizontal line at 500 ms indicates the initial tone peri
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is the same~within error bars! for the two types of experi-
ments. This is to be expected, since 250 ms is near the n
ral period for finger tapping, so the presence or absenc
the metronome makes little difference. However, as the
riod increases, we see thatg is between 0.5 and 1.0 for th
nonstimulus experiments, indicating the presence of lo
range correlations, but it is less than 0.5 for the period
stimulus experiments, indicating the absence of long-ra
correlations. This shows that, in the absence of the me
nome, the tapping becomes steady with long-range corr
tions, but, when the metronome is present, these long-ra
correlations are broken as the subject attempts to readju
the most recent tones. When the metronome becomes
evant near the natural tapping period,g must approach the
borderline value of 0.5.

For the periodic-stimulus experiments, as the period
the metronome decreases and approaches the natural ta
period of 250 ms, it becomes easier to ignore the metrono
and to establish longer-range correlations, sog increases to-
ward 0.5. For the nonstimulus experiments, as the pe
increases beyond the natural period, the subject find
harder to maintain this period. As a result, there is more d
and the linear fits become worse, causingg to increase.

C. Modification of the DFA method

In using the DFA method, we divided the horizontal ax
of Fig. 3 into intervals of sizen and found the best-fit line in
each interval. The functionF(n) was then the rms average o
the vertical separations between the data points and t
best-fit lines. However, if short-range correlations exist, th
data points near the edge of an interval are less stro
correlated with points near the opposite edge of that sa
interval than they are with the nearby points in the neighb
ing interval. Thus, it makes more sense to letDk

(n) be the
vertical separation between the data pointI k and the best-fit
line for an interval of sizen centered about this data poin
~i.e., there is a different best-fit line for each data pointI k).
Note that only odd values ofn may be used in this case
However, it is no longer necessary forn to divide evenly into
120 ~or a value close to 120!.

If short-range correlations exist, then, on average,
modification should reduce the separationsuDk

(n)u and their
rms averageF(n), and this may reduce the scaling expone
g. Thus, a reduction in these scaling exponents would
evidence of short-range correlations. The scaling expon
g̃ (p) obtained using the modified DFA method are listed
Table II. Note that they are indeed smaller than the previ
scaling exponentsg (p), which shows that short-range corr
lations do exist.

TABLE I. Scaling exponentsg.

Type of
experient

Periodp

250 ms 500 ms 750 ms

periodic-stimulus 0.49760.053 0.44060.052 0.34560.072
nonstimulus 0.45460.053 0.65160.089 0.75760.109
tu-
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D. Correlation length

In Sec. III A, we pointed out that, because of the prese
of short-range correlations, the plot of lnF(n) versus lnn in
Fig. 4 deviates from linearity whenn becomes large. This is
due to the fact that, when the interval sizen exceeds the
correlation length, the data near the two ends of the inte
become uncorrelated, and the relationF(n);ng ceases to be
valid. Thus, the value ofn where the plot in Fig. 4 ceases t
be linear is an estimate of the correlation lengthL of the data
set.

To find the correlation lengthL, we begin by selecting a
cutoff valueNc>5 and plotting lnF(n) versus lnn only for
n<Nc . We then find the best-fit line for this plot, and we l
x(Nc) denote the rms deviation of the plot from this best-
line. The average ofx(Nc) for Nc5 5, 6, and 7 is denoted by
x0, and this is taken as an estimate of the deviation fr
perfect linearity in the initial linear region. AsNc increases
further, so does the ratioR(Nc)5x(Nc)/x0, and the value of
Nc where this ratio exceeds a critical valueRc is taken as the
estimate of the correlation lengthL.

Typical examples of plots ofx(Nc) versusNc for the
DFA method and the modified DFA method are shown
Figs. 8~a! and 8~b!, respectively. For the modified DFA

TABLE II. Scaling exponentsg̃.

Type of
experiment

Periodp

250 ms 500 ms 750 ms

periodic-stimulus 0.32460.058 0.27260.086 0.18260.057
nonstimulus 0.29860.051 0.51460.086 0.60760.098

FIG. 8. x(Nc) versusNc for nonstimulus data at 750 ms usin
~a! the DFA method and~b! the modified DFA method. The solid
lines indicate the estimates of the correlation lengthL using a cutoff
of Rc54.
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method, the estimate of the correlation lengthL is quite in-
sensitive to the value of the cutoffRc , so this is the method
that we chose to use. For definiteness, we then ch
Rc54.

For each data set, we estimate the correlation lengthLs j
(p) ,

and then we average these values just as we did for
scaling exponentsgs j

(p) :

Ls
(p)5

1

5 (
j 51

5

Ls j
(p) , ~8!

L (p)5
1

5 (
s51

5

Ls
(p) . ~9!

The final results are given in Fig. 9 and Table III. For t
periodic-stimulus experiments, the correlation length is in
pendent of the period~within the error bars!, which suggests
that the subject relies on a fixed number of previous ta
rather than a fixed time interval~note that the three period
vary by considerably more than the error bars for the co
lation lengths!.

For the nonstimulus experiments, the situation is l
clear. The correlation lengths do agree within one stand

FIG. 9. Correlation lengthsL for the three periodsp for the ~a!
periodic-stimulus and~b! nonstimulus experiments. For each p
riod, the open circles are the values ofLs

(p) for the five subjects and
the filled circle is the averageL (p) of the five valuesLs

(p) .

TABLE III. Correlation lengthsL.

Type of
experiment

Periodp

250 ms 500 ms 750 ms

periodic-stimulus 20.9268.11 23.7266.69 28.6868.18
nonstimulus 23.0065.19 23.6466.84 17.2462.99
se

he

-

s,

-

s
rd

deviation, but just barely. On the other hand, the correspo
ing time intervals for the three periods 250 ms, 500 ms, a
750 ms are 5.7561.30 s, 11.8263.42 s, and 12.9362.24 s,
respectively, and the latter two values are quite close. T
may indicate that there is a transition from reliance on a fix
number of taps to reliance on a fixed time interval if t
tapping period becomes large enough. However, investi
ing this possibility will require collecting data at many mo
periods, so this is a subject for future study.

E. Analysis of time lags

In the previous sections we analyzed data that were
ferenced so as to give the time intervals between consecu
taps. However, this is not the only way to difference the da
For the periodic-stimulus experiments, we can also find
time lag between each stimulus tone and the correspon
response tap. The raw data set consists of two column
data: $Si ; i 51, . . . ,N% are the times of the stimulus tone
and$Ri ; i 51, . . . ,N% are the times of the response taps. W

then form the differenced data set$D̃ i ; i 51, . . . ,N%, where

D̃ i5Ri2Si ~10!

is now the time lag between the stimulus tone and the
sponse tap~which may be either positive or negative!. Note
that we analyze these time lags only for the periodic-stimu
experiments.

Proceeding as before, we obtain the results given in Ta
IV. Within the error bars, the scaling exponentsg are be-
tween 0.5 and 1.0, which indicates the presence of lo
range correlations. However, when we analyzed the time
tervals between taps for these periodic-stimulus experim
~in Sec. III B!, we found that the scaling exponents were le
than 0.5, which indicated the absence of long-range corr
tions. The presence of long-range correlations for the ti
lags, but not for the time intervals, indicates that the sub
adjusts quickly to the correct period, but then eliminates
time lags much more slowly through a gradual drift. This c
also be seen from a direct examination of the data.

The additional conclusions are the same as before.
scaling exponentg again decreases steadily with increasi
period. The exponentg̃ is less than the exponentg, which
indicates the existence of short-range correlations. The
relation lengthL is again independent of the period, indica
ing a reliance on a fixed number of taps, rather than a fi
time interval.

TABLE IV. Scaling exponents and correlation lengths for t
time lags.

Periodp

250 ms 500 ms 750 ms

g ~DFA! 1.0460.09 0.9160.11 0.8560.06

g̃ ~modified DFA! 0.9360.11 0.8360.13 0.7360.09

L 16.3663.23 19.4865.24 19.0864.26
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IV. DETERMINISTIC CHAOS VERSUS RANDOMNESS

The time series in Figs. 1 and 7 appear to fluctuate r
domly, but it is possible that these fluctuations are the re
of a deterministic process, and that they are chaotic, ra
than truly random. This is an important distinction, since
chaotic time series contains a degree of order that is us
for prediction and modeling. In this section, we will use
test developed by Salvino and Cawley@16# to investigate
whether the time series are deterministically chaotic or tr
random.

A. Time series and embedding

Most systems in nature have a very large number of
grees of freedom, but such systems can often be mod
using only a few relevant variables. For example, a gas c
sisting of 1023 molecules can often be described using onl
few variables, such as pressure, volume, and tempera
Once the relevant variables have been determined, the
evolution of the system may be described by a trajectory
low-dimensional space with these relevant variables as
axes. Although our data sets consist of time series of on
single variable, Takens@17# developed a method for usin
such data sets to construct a representation of the trajec
in another low-dimensional space which is topologica
equivalent to that of the true trajectory. Such a representa
is called an embedding of the trajectory, and we now rev
Takens’ method for constructing an embedding from a ti
series of a single variable.

To construct anm-dimensional embedding from a tim
series $xi%, we select an index lagl, and we form the
m-dimensional vectors

vW i5~xi ,xi 1 l , . . . ,xi 1(m21)l !. ~11!

A plot of the time series$vW i% in m dimensions will then give
the desired embedding of the true trajectory for the syst
The quality of this embedding does depend on the cho
values ofm and l. For example, if the space for the tru
trajectory is three-dimensional, but we construct a tw
dimensional embedding, then we will obtain a projection
the trajectory onto only two dimensions. Also, the index l
l must not be very short or very long compared to the ti
scale of the dynamics. In the former case, all of the com
nents of the vectorvW i will be nearly the same, causing th
embedded trajectory to be compressed along a single lin
the latter case, the components of the vectorsvW i become
uncorrelated, and the embedded trajectory does not repre
the true underlying dynamics of the system. There is an
tensive literature regarding the selection of appropriate
ues form and l. However, in using the method of Salvin
and Cawley, we need not be concerned with these detai

As an illustration, consider the trajectory in three dime
sions generated by the three coupled Lorenz equations@18#:

ẋ5s~y2x!,

ẏ5rx2y2xz, ~12!

ż52bz1xy.
n-
lt
er

ful
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For the standard parameter valuess510, r 528, and
b58/3, we integrate these equations using a fourth-or
Runge-Kutta method with a time stepdt50.001 to obtain
the trajectory shown in Fig. 10. We then construct a tim
series $xi% by measuring the variablex(t) at the times
0,t,2t, . . . ,wheret50.05550dt. This time series is shown
in Fig. 11, and, like the time series in Figs. 1 and 7, it a
pears to be random. However, we know that it is actua
chaotic, since it was generated by the deterministic Lor
equations. To reconstruct the trajectory from the single ti

FIG. 10. Trajectory for the Lorenz system@Eqs. ~12!# for the
parameter valuess510, r 528, andb58/3.

FIG. 11. Time series$xi% for the trajectory in Fig. 10.
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series$xi%, we form the vectorsvW i given by Eq.~11!, and we
plot these vectors as points inm dimensions. Usingl 53 and
m53 yields the embedding shown in Fig. 12, which is t
pologically equivalent to the true trajectory in Fig. 10.

B. Method for distinguishing between chaos and randomness

The basis for the method of Salvino and Cawley is
fact that a deterministic process generates a smooth tra
tory like the one in Fig. 10. As a result, the trajectory reco
structed from the embedding will have a degree of smoo
ness, rather than hopping around randomly. Thus, we
distinguish deterministic chaos from randomness by mea
ing the smoothness of the embedding.

In order to illustrate the basic idea, consider the unit t
gent vector at each point of the trajectory in Fig. 10. T
assignment of a particular unit vector to each trajectory po
is a simple example of a vector field, and other assignme
of unit vectors to these points produce other vector fie
Since nearby points have nearly the same unit vector
local average of these vectors will produce nearly the sa
vector again, and its length will be nearly 1. However, if t
assignment of unit vectors to trajectory points is rando
rather than smooth, then, in a local average, these vec
will tend to cancel and yield a net vector whose length
much less than 1. Thus, the length of the local average of
unit vectors in the vector field may be used to distingu
deterministic chaos from randomness.

Salvino and Cawley constructed a vector field by cho
ing five numbersc0 ,c1 ,c2 ,c3 , andc4 and then assigning to
each embedded trajectory pointvW i the unit vector

fW i5(
r 50

4

crvW i 1r Y U(
r 50

4

crvW i 1rU. ~13!

In fact, they constructed ten different vector fields using
ten sets of coefficients listed in Table V. Note that the fi

FIG. 12. Reconstruction of the trajectory in Fig. 10 from t
single time series$xi% of Fig. 11 using a time lagl 53 and an
embedding dimensionm53. Successive points have been co
nected by straight lines as a guide to the eye.
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vector field producesfW i5(vW i 112vW i)/uvW i 112vW i u, which are
roughly the same as the unit tangent vectors.

We now partition them-dimensional embedding spac
into a uniform grid of smallm-dimensional cubes. For eac
cube, we average the unit vectorsfW i in that cube to obtain
the vector

YW j5
1

nj
(
i 51

nj

fW i , ~14!

wherej labels the particular cube andnj denotes the numbe
of trajectory points within that cube. If the embedding
smooth, then the vectorsfW i within a single cube will be
nearly the same, so thatuYW j u2 will be nearly 1. However, if
the embedding is not smooth, then the vectorsfW i within a
single cube will point in many different directions, so th
they will tend to cancel in the sum, anduYW j u2 will be much
smaller than 1. The global average ofuYW j u2 is given by

W5(
j

nj uYW j u2Y (
j

nj . ~15!

A value of W near 1 indicates deterministic chaos, while
value ofW much smaller than 1 indicates randomness.

Since this method relies on having several vectors in e
grid cube, then, for a finite number of data points, the
cubes cannot be too small. As a result, even for a smo
deterministic trajectory, the vectorsfW i within the same cube
will vary somewhat, andW will be less than 1. Also, since
the number of vectors in each box will be limited, then, ev
for a random process, the vectors within each box will n
cancel completely, andW will be small, but nonzero. There
fore, we need a concrete criterion for deciding whetherW is
large enough to indicate determinism or small enough
indicate randomness.

A simple way to test whether a data set is deterministic
random is to see whether or not randomizing it reduces
value ofW substantially. However, when we randomize t
data set, we do not want to alter its basic distributional pr
erties, such as its power spectrum@i.e., the magnitude of its
Fourier transformF(k)#. Thus, to randomize a data set, w
take the Fourier transform, we then randomize the pha
u(k), but leave the magnitudesuF(k)u unchanged, and we
then take the inverse Fourier transform. The resulting r

TABLE V. Coefficients for the ten different vector fields.

c0 c1 c2 c3 c4

1 21.0 1.0 0.0 0.0 0.0
2 23.0 4.0 21.0 0.0 0.0
3 2.0 25.0 3.0 0.0 0.0
4 4.7 23.0 21.7 0.0 0.0
5 22.0 3.0 24.0 3.0 0.0
6 3.5 22.7 21.4 0.6 0.0
7 23.4 20.5 20.1 4.0 0.0
8 1.0 2.0 3.0 24.0 22.0
9 0.9 0.8 23.5 4.0 22.2
10 3.0 22.0 0.0 2.0 23.0
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domized data set is referred to as a surrogate data se
order for the surrogate data set to remain real, the phaseu(k)
must be odd aboutk50. Thus, for eachk.0, we choose
u(k) to be a random number between2p and p, and we
then choose the remaining phases by requiring thatu(2k)
52u(k) @and, thus,u(0)50#. A fast Fourier transform
~FFT! routine was used to calculate the Fourier transform
As with most FFT routines, it requires the data set to hav
sizeN which is a power of 2.

For the surrogate data set, we again compute the value
W for each of the ten vector fields in Table V. The range
these ten values indicates the range expected for random
sets. We then compute the ten values ofW for the original
data set. If the original data set is random, then these la
values ofW should fall within the same range as the valu
for the surrogate data set. However, if the original data se
deterministic, then the largest of the ten values ofW for the
original data set should be significantly above the range
values for the surrogate data set. Since the quality of
embedding depends on the embedding dimensionm and the
index lagl, we repeat this procedure for a range of values
l, and we check that the results are not dependent on
value chosen form.

As an example, we analyze a data set consisting of 2
successive values from the time series$xi% of Fig. 11, which
was obtained from the Lorenz system@Eqs.~12!# and used to
produce the embedding in Fig. 12. We used an embed
dimensionm53 and a grid of 40340340 boxes. It should
be noted that most of these boxes are empty, and, in c
puting W, we included only those boxes containing at le
three embedded points. The results are shown in Fig.
where the two lower curves give the maximum and mi
mum values ofW for the surrogate data set, and the upp
curve gives the maximum value ofW for the original data
set. We see that the maximum value ofW for the real data is
well above the range of values for the surrogate data set,
this shows that the original data set was generated by a
terministic process.

In general, the separation between the upper curve and
two lower curves is not this dramatic. As another examp
we analyze a time series that consists of the particular ti
at which x(t) for the Lorenz system@Eqs. ~12!# reaches a
local maximum. Since this samples the trajectory less
quently than does the above example, the evidence of d
ministic chaos should not be as strong. This is a more r
istic analog to our finger-tapping data, since it consists of
times at which a particular event occurred. The results of
latter analysis are shown in Fig. 14. The number of d
points is 2048, the embedding dimension ism53, and the
grid consists of 10310310 boxes. As in the above exampl
the lower two curves give the maximum and minimum v
ues ofW for the surrogate data set, and the upper curve g
the maximum value ofW for the original data set. In this
case, the maximum value ofW for the original data set is no
nearly as close to 1 as in the previous example. In addit
the range of values for the surrogate data set is much lar
and the maximum value ofW for the original data set is no
as well separated from this range.

C. Results of the analysis

For each subject, period, and experiment type, we initia
analyzed each of the five data sets separately. Howe
In
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those data sets were too small (N5128) to satisfy the re-
quirement of having small cubes with several data points
each cube. As a result, we instead concatenated the five
sets to form a single longer data set (N5640). We have
checked that such concatenation does not alter the re
obtained for the Lorenz system@Eqs. ~12!#. We have also
checked that the method of Salvino and Cawley can de
determinism for such small data sets. For example, the
terminism is quite evident for a data set of onlyN5512
points obtained from the Lorenz system with an added no
level of 10%.

A typical plot is shown in Fig. 15. Here, we used a
embedding dimensionm52 and a grid consisting o
27327327 boxes, but other choices gave similar resu
Also, the plots for other subjects, periods, and experim
types are all similar to this plot, and this is the case for b
types of differencing~time intervals and time lags!. These
plots show no evidence of low-dimensional chaos and
stead indicate that the fluctuations are stochastic in nat
This indicates that any model of this system using a sm
number of relevant variables must include randomne
rather than being purely deterministic.

V. SUMMARY AND DISCUSSION

An analysis of the time intervals between taps sho
long-range correlations for the nonstimulus experiments,
not for the periodic-stimulus experiments. This indicates t
the presence of the metronome breaks the long-range c
lations as the subject attempts to readjust to its most re
tones. On the other hand, an analysis of the time lags

FIG. 13. W versus l for the Lorenz system@Eqs. ~12!#. The
lower two curves give the maximum and minimum values ofW for
the surrogate data set, and the upper curve gives the maxim
value ofW for the original data set.



d
a

ck
he

se
rr
es
r o
on
re
in

th
tic
t
th

w-
the
ely
di-

ha-
is

ic-
lus
cted
ill
ject

cel-
u-

at
l
m
th

a
pe.
t.

2606 PRE 62SEAN ROBERTS, R. EYKHOLT, AND MICHAEL H. THAUT
tween the stimulus tones and the response taps in perio
stimulus experiments shows that long-range correlations
present in these data. This indicates that a subject qui
adjusts her tapping period to the metronome period, but t
eliminates the time lag~or phase shift! more slowly through
a gradual drift.

We also showed that short-term correlations were pre
in all of these experiments, and we determined these co
lation lengths. For the periodic-stimulus experiments, th
results indicate that a subject relies on a fixed numbe
previous taps, rather than a fixed time interval. For the n
stimulus experiments, the results are not as clear, but the
some indication that a subject may rely on a fixed time
terval for larger tapping periods.

Although the presence of correlations might suggest
the fluctuations in the data are deterministically chao
rather than random, a direct test for determinism failed
demonstrate its presence. One possible explanation for

FIG. 14. W versusl for a time series consisting of the times
which x(t) for the Lorenz equations@Eqs. ~12!# reaches a loca
maximum. The lower two curves give the maximum and minimu
values ofW for the surrogate data set, and the upper curve gives
maximum value ofW for the original data set.
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discrepancy is that the deterministic chaos is not lo
dimensional, since our data sets were too small to test for
existence of high-dimensional chaos. However, a more lik
explanation is that the fluctuations have the nature of
rected Brownian motion, which is random, rather than c
otic, but which also contains correlations. This explanation
also consistent with the conclusion that, in the period
stimulus experiments, the time lags between the stimu
tones and the response taps are eliminated by a slow dire
drift. Deciding whether or not this is actually the case w
require a considerable amount of effort, so this is a sub
for future study.
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FIG. 15. A typical plot ofW versusl for the concatenated dat
from a single subject for a particular period and experiment ty
The lower line is the minimum value ofW for the surrogate data se
The maximum values ofW for the surrogate data set~inverted tri-
angles! and the original data set~circles! are nearly the same.
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