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Analysis of correlations and search for evidence of deterministic chaos in rhythmic motor control
by the human brain
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We investigate rhythmic finger tapping in both the presence and the absence of a metronome. We examine
both the time intervals between taps and the time lags between the stimulus tones from the metronome and the
response taps by the subject. We analyze the correlations in these data sets, and we search for evidence of
deterministic chaos, as opposed to randomness, in the fluctuations.
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[. INTRODUCTION nance, prevent entrapment in spurious states, and induce
phase trasitions which switch from one state to another
Studies of patterns in rhythmic movement have held 48,13,14. Thus, the observed temporal fluctuations in time
special interest in neuroscience and the behavioral sciencesries of rhythmic movement may serve a control function in
because they allow insight into the mechanisms responsiblgenerating and maintaining rhythmicity, rather than simply
for the emergence of temporal order in the central nervousorrupting time stability. Another crucial question is whether
system and the ability to regulate complex movement andhe fluctuations are truly random or just the result of a deter-
sensorimotor coordination. Although the brain is remarkablyministic chaotic process.
adept at producing stable rhythmicity in movement patterns Recent studief2,7,15 have shown that stride-cycle fluc-
over long periods of time, careful analysis of such time serie¢uations in gait show long-range power-law correlations.
reveals the ubiquitous and puzzling presence of tempordtiowever, these correlations disappeared when stride patterns
fluctuations in the control of rhythmic movemefit]. For  were cued by a metronome as an external time keeper. The
example, complex temporal fluctuations can be observed ipresence of long-range correlations would suggest the pres-
sequential stride-interval patterf], finger-tapping periods ence of some deterministic process in tracking fluctuating
[3], etc. In rhythmic synchronization tasks, the temporal fluc-time patterns, but follow-up studies regarding the presence
tuations in motor timing create “noisy” period and phase and type of deterministic chaos have not been done for these
relationships between the rhythmic stimulus and the motodata. Furthermore, gait rhythmicity is believed to be driven
responsg4,5]. These appearances of randomness or noise iphysiologically by central pattern generators, reticulospinal
the temporal domain are not limited to the motor system, butneural ensembles with oscillatory output, implying biologi-
rather, they appear to be a typical and intrinsic manifestatiogally hard-wired rhythm control. In contrast, rhythmic pat-
of complex physical and biological systerf§], and the tern organization can also be achieved in a wide range of
study of the nature of these fluctuations has been the focus afiovements which are not linked to physiologically rhythmic
many research effor{d,7-9. neural control structures. As an example, for finger tapping
If we consider a model of the brain as a chaotic dynamicaln the presence of a metronome, there is rapid adaptation to
system with nonlinear dissipatiofil0], we would expect changes in the metronome pattern, even when these changes
such a system to exhibit a certain amount of erratic fluctuaare below perception thresholds and well within the range of
tion. An understanding of the inherent properties of thesdhe variability of the tapping5,12].
noise patterns would yield considerable insight into the un- The present study extends the analysis of gait rhythmicity
derlying control structure for the timing of rhythmic move- to finger tapping, which involves arm movement and is rep-
ment. A remarkable observation, which has not been acresentative of a different neural control system for motor
counted for sufficiently in purely statistical approach#s],  rhythm. The basic experiment is described in Sec. Il, and we
is how long-range periodic movement patterns are mainanalyze the presence of correlations in Sec. Ill. In Sec. IV,
tained and minuscule or even subliminal perceptual timingve then search for evidence of deterministic chaos as the
adjustments are made with great speed and accuracy withinsmurce of the randomness in the temporal fluctuations. Fi-
system exhibiting strong stochastic propertj€sl2]. Sto- nally, we summarize our results in Sec. V.
chasticity can impose limitations on modeling and predic-
tion, and on understanding the operational measures of a
system’s behavior. However, much theoretical and empirical
research has pointed out potential benefits of the presence of The experiment examines the ability of the human brain
randomness as a critical prerequisite for the dynamical ato produce periodic arm movement. A periodic series of
tributes of brain and behavior function. For example, sto-tones is generated in a set of headphones, and each subject
chasticity may sharpen signal detectigstochastic reso- attempts to tap her finger at the same instant as these tones.

Il. EXPERIMENT
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FIG. 1. Differenced time series for a periodic-stimulus experi- FIG. 2. Integrated time series formed from the differenced data
ment. The solid horizontal line at 250 ms indicates the tone periodset of Fig. 1.

Each finger tap touches a hand-held electrode to a metgkrned with this transient behavior, we discard the first ten
plate, and this allows the time of the tap to be recorded. Tqjata points from each data set. As the subject continues to
collect a set of data, we generate a series of tones, and thgp, the time interval between taps tends to vary, and it is
subject begins tapping the electrode against the metal platghese variations that we wish to analyze. In particular, we are

The times, in milliseconds, of the tones and the taps argterested in the correlations between the variations for suc-
recorded, with the first tone occurring at tire 0. The raw  cessive time intervals.

data then consist of two columns of numbers, the times of From the raw data séR;;i=1, ... N} consisting of the
the stimulus tones and times of the response taps. times of the individual taps, we form the differenced data set
Two versions of the experiment were performed. In thefp,:j=1 ... N—1}, where

first version, the periodic series of tones is present for the
entire duration of the experiment. This version will be re-
ferred to as the periodic-stimulus experiment. In the second
version, only ten tones are generated, and the subject then
attempts to continue tapping at this periodic rate withoutS the time interval between two successive taps. Figure 1
having additional tones as a guide. This version will be reshows a typical differenced data set for a periodic-stimulus
ferred to as the nonstimulus experiment. Each of these twgxperiment with a tone period of 250 ms.
experiments was performed for three different tone periods:
250 ms, 500 ms, and 750 ms. Note that 250 ms is near the A Method for analyzing variations in tapping interval
natural period for finger tapping in the absence of any exter- . L )
nal stimulus. While this natural period does vary a bit from 10 analyze the correlations between successive time in-
person to person, it is generally about four taps per second€vals, we use detrending fluctuation analy&I5A), which

The five subjects were female volunteers whose ages wel¥@S developed by Hausdcet al [2] to analyze variations in
28.2+6.9 years. The subjects were healthy and had n(gmman gait. We pegm by calcu[atmg the average tap interval
known cognitive, perceptual, or neuromuscular disorderPavg@nd the deviation of each interval from this average:
Each subject performed all six of the experiments in two N—1
one-hour sessions. Each session was limited to one hour so D :L 2 D. )
as to reduce physical fatigue in the forearm and hands, and to MON-1 &
reduce mental fatigue from listening to tones in headphones.

Di=Ri;1— R 1

ADi:Di_Dan' (3)
Ill. ANALYSIS OF CORRELATIONS

When a subject first begins tapping her finger, it takesWe then form the integrated time serig¢f ;k=1,...,
several taps to establish a rhythm. Since we are not corN—2} by adding up the firsk deviationsAD; :
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FIG. 3. Least-square local linear fits to the integrated time series
of Fig. 2. The interval size oh=20 is indicated by the vertical

lines, and the lines through the data are the linear fits.

FIG. 4. InF(n) versus Im for the integrated time series shown
in Fig. 2. The slope of the solid line is the scaling expongnt

k Repeating this procedure for all interval sizes3,4,5 . ..
|k:2 AD; (4)  VYields a functionF(n) which measures the degree of local
=1 linearity over a time interval of taps[note thatF(n)=0

unlessn=3, since a linear fit to fewer than three points must

(note thatly_,=0). Figure 2 shows the integrated time se- be perfeck As the interval sizen increases, the linear fits
ries formed from the differenced data set of Fig. 1. should become worse, $&(n) should increase. Assuming a
Next, we examine how well the integrated time seriespower-law behavioF (n)~n?, the scaling exponeng may
may be fit locally by linear functions. To do this, we divide be used to characterize the correlations in the data. Accord-
the horizontal axis into intervals of equal lengthand, for  ing to Hausdorfet al. [2], a value ofy between 0.5 and 1.0
each interval, we find the line which is the best fit to the datandicates persistent long-range correlations.
(see Fig. 3. We repeat this process for all interval sizes The exponenty is the slope of a plot of If(n) versus
n=3,4,5... However, not all interval sizes will divide  |nn. Such a plot is shown in Fig. 4 for the integrated time
evenly into the numbeN —2 of data points. Therefore, when series of Fig. 2. Note that this plot deviates from linearity as
we divide the integrated time series into intervals, we aty, pecomes large. This is because of the presence of short-
tempt to use only the first 120 of té—2=128 data points. range correlations, and we will discuss this point in more

For those values af that do not divide evenly into 120, We getail in Sec. Il D. The procedure for determining the extent
then add back the first few data points that were removeds ha jinear region is also described there.

from the end of the data set, or we remove a few additional
data points, so that the interval sigevill divide evenly into
the number of data points used. However, if this procedure
requires the number of data points used to differ from 120 by
more than 8, then that interval sipdis not used. We begin by analyzing the periodic-stimulus experiments,
To measure the deviation of the integrated time seriegvhere the periodic series of tones is present for the entire
from local |inearity, we compute the vertical Separa[m&q) duration of each experiment. Each of the five Subjects per-
between the data poi and the local best-fit linéas illus- ~ formed this experiment five times at each of three tone peri-
trated in Fig. 3, and then we compute the rms average ofods, 250 ms, 500 ms, and 750 ms. For each of these data sets

B. Results of the analysis

these separations: we calculated a scaling exponef 'J?), wheres=1,...,5
indicates the particular subjegtjndicates the particular tone
N=2 period, and =1, ... ,5indicates one of the five experiments
F(n)= L 2 |A(kn)|z_ (5) for that particular subjgct and that particular p(_ariod. We then
N—2 (= averageyg‘j’) over the five experiments to obtain
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riod, the open circles are the valuesyé?) for the five subjects, and

FIG. 5. Plots of InF(n) versus Im for the five separate periodic-
stimulus experiments for one particular subject and a period of
p=750 ms. The slopes of the five best-fit lines are the five scalind)
exponentsy®) , and the average of these five slopgd is indi-
cated by the dark line above the five plots.

the filled circle is the average® of the five valuesy{” .

orted uncertainty is the standard deviation of the five values
ygp) that were averaged to obtain that particular scaling ex-
ponentyP.
We first note that, for a period of 250 ms, the valueyof

1 5
),(Sp):g 2 7’(5?), (6) 520 -
j=1
and we average this over all five subjects to determine an 500 .
average scaling exponent for each penmnd . " +
0 ’ .
5 E 480 e, e 1
() (P) = ++ T ",
Y _5 & Vs - (7) § +t +$+: ++++ + +
= 460 f P
Figure 5 shows the five values of? for one particular g § A
subjects and a period op=750 ms, as well as the average 3_ . . *, N o ¥
¥{?) of these five values. Figurd#® shows the five values of S 40 e S 1
¥{") and their average/!P) for each of the three periods g s o,
Figure 6b) shows the corresponding results for the non- E L
stimulus experiments, where the periodic series of tones is 2 420 - ot A
stopped after only ten tones, and the subject attempts to con- = * +
tinue tapping at this periodic rate without having additional + .
tones as a guid@éemember that the first ten taps were con- 400 - . .
sidered transient and discardebh the latter case, the subject
does tend to drift from the initial periog, and Fig. 7 shows
a typical differenced data set for a nonstimulus experiment.
In this particular example, the drift is to shorter periods, but, 380
overall, there did not appear to be any preference between tap number i

drifting to longer or shorter periods.
Table | lists the six scaling exponenigP for the two

FIG. 7. Differenced time series for a nonstimulus experiment.
types of experiment at each of the three periods. Each rerhe solid horizontal line at 500 ms indicates the initial tone period.
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TABLE I. Scaling exponentsy. TABLE II. Scaling exponentsy.
Periodp Period
Type of Type of P
experient 250 ms 500 ms 750 ms experiment 250 ms 500 ms 750 ms
periodic-stimulus  0.4970.053  0.44G:0.052  0.343:0.072  periodic-stimulus ~ 0.3240.058 0.272-0.086 0.182-0.057
nonstimulus 0.4540.053 0.65%*0.089 0.75%0.109 nonstimulus 0.2980.051 0.5140.086 0.60%0.098
is the samgwithin error bar$ for the two types of experi- D. Correlation length

ments. This is to be expected, since 250 ms is near the natu- |, gec. |1 A, we pointed out that, because of the presence
ral period for finger tapping, so the presence or absence Qft short-range correlations, the plot offitn) versus Im in

the metronome makes little difference. However, as the PeFig. 4 deviates from linearity whem becomes large. This is
riod increases, we see thﬁ“s between 0.5 and 1.0 for the due to the fact that, when the interval simeexceeds the
nonstimulus experiments, indicating the presence of longcorrelation length, the data near the two ends of the interval
range correlations, but it is less than 0.5 for the periodichecome uncorrelated, and the relatifm) ~n? ceases to be
stimulus experiments, indicating the absence of long-rangealid. Thus, the value of where the plot in Fig. 4 ceases to
correlations. This shows that, in the absence of the metrdbe linear is an estimate of the correlation lengtbf the data
nome, the tapping becomes steady with long-range correlaet.

tions, but, when the metronome is present, these long-range To find the correlation length, we begin by selecting a
correlations are broken as the subject attempts to readjust tutoff valueN.=5 and plotting IrF(n) versus Im only for

the most recent tones. When the metronome becomes irrgl=<N.. We then find the best-fit line for this plot, and we let

evant near the natural tapping periogdmust approach the X(N¢) denote the rms deviation of the plot from this best-fit
borderline value of 0.5. line. The average of(N,;) for N,= 5, 6, and 7 is denoted by

For the periodic-stimu|us experimentS, as the period ofXo» and this is taken as an estimate of the deviation from

the metronome decreases and approaches the natural tappRgJfect linearity in the initial linear region. AN increases

period of 250 ms, it becomes easier to ignore the metronom@!lther, so does the rati@(N.) = x(Nc)/ xo, and the value of
and to establish longer-range correlationsysiacreases to- N, where this ratio exceeds a critical valRg is taken as the

ward 0.5. For the nonstimulus experiments, as the perio§Stimate of the correlation length
Typical examples of plots of(N;) versusN. for the

increases beyond the natural period, the subject finds i o .
harder to maintain this period. As a result, there is more drift‘s':A method and the mod|f_|ed DFA method are shown in

. . . . Figs. 8a) and 8&b), respectively. For the modified DFA
and the linear fits become worse, causingp increase.

(a) (b)
C. Modification of the DFA method 14 ——— 18—
In using the DFA method, we divided the horizontal axis F 16l 1
of Fig. 3 into intervals of size and found the best-fit line in 12 H ' ]
each interval. The functioR(n) was then the rms average of * 1al +
the vertical separations between the data points and these ’ '
best-fit lines. However, if short-range correlations exist, then Tr T *
data points near the edge of an interval are less strongly . 12 ¢ o
correlated with points near the opposite edge of that same 08 L ] *
. . . . . . 1 - +
interval than they are with the nearby points in the neighbor- -~ ~ .
ing interval. Thus, it makes more sense to Mf’ be the = : = N
vertical separation between the data poinand the best-fit 06 # . 08 + 7
line for an interval of sizen centered about this data point ¥ Iy
(i.e., there is a different best-fit line for each data paint * 0.6 f ]
Note that only odd values afi may be used in this case. 04 r ¢ i i
However, it is no longer necessary foto divide evenly into * 04 r f ]
120 (or a value close to 120 oz | 0 ) #
If short-range correlations exist, then, on average, this i 02t f .
modification should reduce the separatigng™| and their Fi ;
rms averagé(n), and this may reduce the scaling exponents S 0 lomed 1 1
y. Thus, a reduction in these scaling exponents would be 0 30 ?\? 90120 0 30 ?\10 90120
(o] c

evidence of short-range correlations. The scaling exponents

() obtained using the modified DFA method are listed in  FiG. 8. x(N,) versusN, for nonstimulus data at 750 ms using
Tab[e Il. Note that they are indeed smaller than the previougs) the DFA method andb) the modified DFA method. The solid
scaling exponents(P), which shows that short-range corre- lines indicate the estimates of the correlation lerigising a cutoff

lations do exist. of R.=4.
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(a) (b) TABLE 1V. Scaling exponents and correlation lengths for the
40 = T T 32 T T time lags.
° 30 r . Periodp
85 r 1 ° 250 ms 500 ms 750 ms
° 28 ° -
°© v (DFA) 1.04+0.09 0.910.11 0.85-0.06
30 + 4 26 e - ;, (modified DFA  0.93+0.11 0.83:0.13 0.73£0.09
L R L 16.36£3.23 19.48&5.24 19.0&4.26
L Logl o ]
o) ° o
25 + . °
° ? . 22 - o] deviation, but just barely. On the other hand, the correspond-
° . ° ing time intervals for the three periods 250 ms, 500 ms, and
20 o T 20 | ° ] 750 ms are 5.751.30 s, 11.823.42 s, and 12.982.24 s,
o respectively, and the latter two values are quite close. This
18 r .' may indicate that there is a transition from reliance on a fixed
157 . 1 number of taps to reliance on a fixed time interval if the
o 16 1 1 tapping period becomes large enough. However, investigat-
° s ing this possibility will require collecting data at many more
10 1 L L 14 L (] L . . . .
950 500 750 950 500 750 periods, so this is a subject for future study.
period p (in ms) period p (in ms)
FIG. 9. Correlation lengthk for the three periodg for the (a) E. Analysis of time lags

p_eriodic-stimulu_s andb) nonstimulus experimer_lts. For_ each pe- In the previous sections we analyzed data that were dif-
riod, the open circles are the valuesLdP for the five subjects and  ferenced so as to give the time intervals between consecutive
the filed circle is the average®® of the five valued (. taps. However, this is not the only way to difference the data.
For the periodic-stimulus experiments, we can also find the

method, the estimate of the correlation lengtis quite in- . . .
o S time lag between each stimulus tone and the corresponding
sensitive to the value of the cutd®., so this is the method .
response tap. The raw data set consists of two columns of

that we chose to use. For definiteness, we then chos

R.—4 ata:{S;;i=1,... N} are the times of the stimulus tones,
c : i .

For each data set, we estimate the correlation Iehgjﬂ] and{R;;i=1,. N} are the tlmes~of_the response taps. We
and then we average these values just as we did for th&en form the differenced data s;;i=1, ... N}, where
scaling exponents? : -

> Di=R-S (10)
(P) 1 . (p)
L=5 jgl Lsi” ® . . :
is now the time lag between the stimulus tone and the re-
5 sponse tagwhich may be either positive or negatjvéote
L(p)zl 2 L 9 that we analyze these time lags only for the periodic-stimulus
5& 5 experiments.

Proceeding as before, we obtain the results given in Table

The final results are given in Fig. 9 and Table III. For thelV. Within the error bars, the scaling exponentsare be-
periodic-stimulus experiments, the correlation length is indetfween 0.5 and 1.0, which indicates the presence of long-
pendent of the penod/\"th”'] the error barb which suggests range correlations. However, when we analyzed the time in-
that the subject relies on a fixed number of previous tapstervals between taps for these periodic-stimulus experiments
rather than a fixed time intervéhote that the three periods (in Sec. Ill B), we found that the scaling exponents were less
vary by considerably more than the error bars for the correthan 0.5, which indicated the absence of long-range correla-
lation lengths. tions. The presence of long-range correlations for the time
For the nonstimulus e)(periments7 the situation is |eséags, but not for the time intervals, indicates that the SUbjeCt

clear. The correlation lengths do agree within one standarg@djusts quickly to the correct period, but then eliminates the
time lags much more slowly through a gradual drift. This can

TABLE IIl. Correlation lengthsl. also be seen from a direct examination of the data.
The additional conclusions are the same as before. The
Periodp scaling exponeny again decreases steadily with increasing
Type of . ~ . .
experiment 250 ms 500 ms 750 ms period. The exponeny is less than the exponent which

indicates the existence of short-range correlations. The cor-
periodic-stimulus ~ 20.928.11  23.726.69  28.688.18  relation lengthL is again independent of the period, indicat-

nonstimulus 23.085.19 23.64-6.84 17.24-2.99 Ing a reliance on a fixed number of taps, rather than a fixed
time interval.
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IV. DETERMINISTIC CHAOS VERSUS RANDOMNESS z

The time series in Figs. 1 and 7 appear to fluctuate ran-
domly, but it is possible that these fluctuations are the result
of a deterministic process, and that they are chaotic, rather
than truly random. This is an important distinction, since a
chaotic time series contains a degree of order that is useful
for prediction and modeling. In this section, we will use a
test developed by Salvino and Cawlg}6] to investigate
whether the time series are deterministically chaotic or truly
random.

A. Time series and embedding

Most systems in nature have a very large number of de-
grees of freedom, but such systems can often be modeled
using only a few relevant variables. For example, a gas con-
sisting of 132 molecules can often be described using only a
few variables, such as pressure, volume, and temperature.
Once the relevant variables have been determined, the time
evolution of the system may be described by a trajectory in a
low-dimensional space with these relevant variables as the FIG. 10. Trajectory for the Lorenz systef&gs. (12)] for the
axes. Although our data sets consist of time series of only @arameter values=10, r =28, andb=8/3.
single variable, Takengl7] developed a method for using
such data sets to construct a representation of the trajectopbr the standard parameter values=10, r=28, and
in another low-dimensional space which is topologicallyh=g/3, we integrate these equations using a fourth-order
equivalent to that of the true trajectory. Such a representatioRunge-Kutta method with a time steft=0.001 to obtain
is called an embedding of the trajectory, and we now reviewhe trajectory shown in Fig. 10. We then construct a time
Takens’ method for constructing an embedding from a timeseries {x;} by measuring the variabl&(t) at the times
series of a single variable. 0,7,27, . .. ,wherer=0.05=506t. This time series is shown

To construct anm-dimensional embedding from a time jn Fig. 11, and, like the time series in Figs. 1 and 7, it ap-
series{x}, we select an index lag, and we form the pears to be random. However, we know that it is actually
m-dimensional vectors chaotic, since it was generated by the deterministic Lorenz
equations. To reconstruct the trajectory from the single time

V= (X X1, co Xis(m-1))- (1)
20 T T T T T T T T T

A plot of the time serie$5i} in m dimensions will then give
the desired embedding of the true trajectory for the system.
The quality of this embedding does depend on the chosen
values ofm and|. For example, if the space for the true
trajectory is three-dimensional, but we construct a two-
dimensional embedding, then we will obtain a projection of
the trajectory onto only two dimensions. Also, the index lag

| must not be very short or very long compared to the time
scale of the dynamics. In the former case, all of the compo-

nents of the vectoﬁi will be nearly the same, causing the
embedded trajectory to be compressed along a single line. In

the latter case, the components of the vectgrdecome
uncorrelated, and the embedded trajectory does not represent
the true underlying dynamics of the system. There is an ex-
tensive literature regarding the selection of appropriate val-
ues form and|. However, in using the method of Salvino
and Cawley, we need not be concerned with these details.

As an illustration, consider the trajectory in three dimen-
sions generated by the three coupled Lorenz equafitBis

x=0o(y—Xx),

20 1 1 1 1 1 L 1 1
y:rx—y—xz, (12) 0 10 20 30 49 50 69 70 80 90 100
time step i

z=—bz+ XYy. FIG. 11. Time serie$x;} for the trajectory in Fig. 10.
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z TABLE V. Coefficients for the ten different vector fields.
1 —-1.0 1.0 0.0 0.0 0.0
2 -3.0 4.0 -1.0 0.0 0.0
3 2.0 -5.0 3.0 0.0 0.0
4 4.7 -3.0 -1.7 0.0 0.0
5 —-2.0 3.0 -4.0 3.0 0.0
6 35 -2.7 -1.4 0.6 0.0
7 —-3.4 -0.5 -0.1 4.0 0.0
8 1.0 2.0 3.0 -4.0 -2.0
9 0.9 0.8 -35 4.0 -2.2
10 3.0 —-2.0 0.0 2.0 -3.0

vector field producesh;= (v;,1—v;)/|vi+1—vi|, which are
roughly the same as the unit tangent vectors.
X -15 We now partition them-dimensional embedding space
-20 . . . . .
into a uniform grid of smalim-dimensional cubes. For each
FIG. 12. Reconstruction of the trajectory in Fig. 10 from the cube, we average the unit VECtQ}_Efﬁ in that cube to obtain
single time seriedx;} of Fig. 11 using a time lag=3 and an  the vector
embedding dimensiom=3. Successive points have been con-
nected by straight lines as a guide to the eye.

13
. Yi= 2 & (14)
series{x;}, we form the vectors; given by Eq.(11), and we ji=t

plot these vectors as pointsimdimensions. Using=3 and
m=3 vyields the embedding shown in Fig. 12, which is to-

pologically equivalent to the true trajectory in Fig. 10.

wherej labels the particular cube amg denotes the number
of trajectory points within that cube. If the embedding is

smooth, then the vectoréi within a single cube will be

B. Method for distinguishing between chaos and randomness ~ Nearly the same, so thfY;|* will be nearly 1. However, if

The basis for the method of Salvino and Cawley is thethe embedding is not smooth, then the vecirswithin a

fact that a deterministic process generates a smooth trajeé'—ngle _cube will point |n_ many dlfferenE d|re<?t|ons, S0 that
tory like the one in Fig. 10. As a result, the trajectory recon-they will tend to cancel in the sum, %Wﬂz will be much
structed from the embedding will have a degree of smoothsmaller than 1. The global averagelﬁv‘f,-|2 is given by

ness, rather than hopping around randomly. Thus, we can

distinguish deterministic chaos from randomness by measur- _ V2 '

ing the smoothness of the embedding. W_; niIYil / ; N 19

In order to illustrate the basic idea, consider the unit tan-
gent vector at each point of the trajectory in Fig. 10. ThisA value of W near 1 indicates deterministic chaos, while a
assignment of a particular unit vector to each trajectory poinvalue of W much smaller than 1 indicates randomness.
is a simple example of a vector field, and other assignments Since this method relies on having several vectors in each
of unit vectors to these points produce other vector fieldsgrid cube, then, for a finite number of data points, these
Since nearby points have nearly the same unit vectors, eubes cannot be too small. As a result, even for a smooth
local average of these vectors will produce nearly the samgeterministic trajectory, the vectogs within the same cube
vector again, and its length will be nearly 1. However, if thewill vary somewhat, andV will be less than 1. Also, since
assignment of unit vectors to trajectory points is randomthe number of vectors in each box will be limited, then, even
rather than smooth, then, in a local average, these vectofsr a random process, the vectors within each box will not
will tend to cancel and yield a net vector whose length iscancel completely, an&/ will be small, but nonzero. There-
much less than 1. Thus, the length of the local average of thfyre, we need a concrete criterion for deciding whethes
unit vectors in the vector field may be used to distinguishiarge enough to indicate determinism or small enough to
deterministic chaos from randomness. indicate randomness.

Salvino and Cawley constructed a vector field by choos- A simple way to test whether a data set is deterministic or
ing five numbersy,c,,C,,C3, andc, and then assigning to  random is to see whether or not randomizing it reduces the
each embedded trajectory pointthe unit vector value of W substantially. However, when we randomize the

erties, such as its power spectriing., the magnitude of its
' 13 Fourier transform(k)]. Thus, to randomize a data set, we
In fact, they constructed ten different vector fields using thef(k), but leave the magnitudd$ (k)| unchanged, and we
ten sets of coefficients listed in Table V. Note that the firstthen take the inverse Fourier transform. The resulting ran-

. A data set, we do not want to alter its basic distributional prop-
d)i:;o CrUi-%—r/ 20 Crjtr
take the Fourier transform, we then randomize the phases
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domized data set is referred to as a surrogate data set. In 1. - - -
order for the surrogate data set to remain real, the phgoe '-,.,
must be odd abouk=0. Thus, for eactk>0, we choose 09 | o ars REPRY P LAY
0(k) to be a random number betweens and 7, and we ° * *
then choose the remaining phases by requiring tfatk)
=-0(k) [and, thus,#(0)=0]. A fast Fourier transform 08 r i
(FFT) routine was used to calculate the Fourier transforms.
As with most FFT routines, it requires the data set to have a 0.7 | 1
sizeN which is a power of 2.

For the surrogate data set, we again compute the values of 06 - ]
W for each of the ten vector fields in Table V. The range of
these ten values indicates the range expected for random data
sets. We then compute the ten values/for the original W 05y 1
data set. If the original data set is random, then these latter
values ofW should fall within the same range as the values 04 F v o, T o o 7]
for the surrogate data set. However, if the original data set is R e, T T T Y
deterministic, then the largest of the ten valuesh\bfor the 03 | 8 & .., e
original data set should be significantly above the range of 7 Il 0 o ot 8 et ]
values for the surrogate data set. Since the quality of the
embedding depends on the embedding dimensi@and the 02| .
index lagl, we repeat this procedure for a range of values of
[, and we check that the results are not dependent on the 01 1
value chosen fom.

As an example, we analyze a data set consisting of 2048 0 , , ,
successive values from the time sefigg of Fig. 11, which 250 500 750
was obtained from the Lorenz systéBys.(12)] and used to time lag |

produce the embedding in Fig. 12. We used an embedding

dimensionm=3 and a grid of 4& 40x 40 boxes. It should FIG. 13. W versus| for the Lorenz systeniEgs. (12)]. The

be noted that most of these boxes are empty, and, in confower two curves give the maximum and minimum values\bfor
puting W, we included only those boxes containing at leastthe surrogate data set, and the upper curve gives the maximum
three embedded points. The results are shown in Fig. 1dalue ofWfor the original data set.

where the two lower curves give the maximum and mini- .
mum values ofW for the surrogate data set, and the upperthose data sets were too sma € 128) to satisfy the re-

curve aives the maximum value & for the original data quirement of having small cubes with several data points in
set Wg see that the maximum valueVifior the rgal data is each cube. As a result, we instead concatenated the five data

well above the range of values for the surrogate data set, art 15 o form a single longer data sé<640). We have

this shows that the original data set was generated by a d%b(te;ilri% tfr(;?ttr?:crofgnnzce;tesrlztégnSd((Jlezs)]n(\)/:/ealﬁzrvéhzlsrgsults
terministic process. Yy gs. .

In general, the separation between the upper curve and 1% ecked that the method of Salvino and Cawley can detect

two lower curves is not this dramatic. As another example e;trilrrr:'srr‘:]sr; fo&itseucer:/icsjr:r?t" f(;?t: Zztt;' E((a)tr cenf(imple;sige de-
we analyze a time series that consists of the particular time,%e . d iy

at which x(t) for the Lorenz systenfiEgs. (12)] reaches a points obtained from the Lorenz system with an added noise

local maximum. Since this samples the trajectory less frelevel of .10%' . A
A typical plot is shown in Fig. 15. Here, we used an

qguently than does the above example, the evidence of deter—mbeddin dimensionm=2 and a arid consisting of
ministic chaos should not be as strong. This is a more reaf?7>< 57% Zg b but Ih hoi 9 imil 9 it
istic analog to our finger-tapping data, since it consists of th OXes, but oIher choices gave similar resufts.

times at which a particular event occurred. The results of thi Iso, the pIot; fpr other_subjects, per_|0(_js, and experiment
latter analysis are shown in Fig. 14. The number of dat ypes are all similar to this plot, and this is the case for both

points is 2048, the embedding dimensiomis-3, and the ypes of differencing(time intervals and time lagsThese

grid consists of 18 10x 10 boxes. As in the above example plots show no evidence of low-dimensional chaos and in-
the lower two curves give the m.aximum and minimum Val’_stead indicate that the fluctuations are stochastic in nature.

ues ofW for the surrogate data set, and the upper curve giveghIS indicates that any ”.‘Ode' of this system using a small
the maximum value ofV for the original data set. In this fumber  of rellevant variables must include randomness,
case, the maximum value @V for the original data set is not rather than being purely deterministic.
nearly as close to 1 as in the previous example. In addition,
the range of values for the surrogate data set is much larger,
and the maximum value oW for the original data setis not  an analysis of the time intervals between taps shows
as well separated from this range. long-range correlations for the nonstimulus experiments, but
not for the periodic-stimulus experiments. This indicates that
the presence of the metronome breaks the long-range corre-
For each subject, period, and experiment type, we initiallylations as the subject attempts to readjust to its most recent
analyzed each of the five data sets separately. Howevetpnes. On the other hand, an analysis of the time lags be-

V. SUMMARY AND DISCUSSION

C. Results of the analysis
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FIG. 14. W versusl| for a time series consisting of the times at ~ FIG. 15. A typical plot of W versusl for the concatenated data
which x(t) for the Lorenz equation§Egs. (12)] reaches a local from a single subject for a particular period and experiment type.
maximum. The lower two curves give the maximum and minimumThe lower line is the minimum value &¥ for the Surrogate data set.
values ofW for the surrogate data set, and the upper curve gives thdhe maximum values o for the surrogate data sénverted tri-
maximum value ofW for the original data set. angles and the original data sétircles are nearly the same.

tween the stimulus tones and the response taps in periodigiscrepancy is that the deterministic chaos is not low-
stimulus experiments shows that long-range correlations argimensional, since our data sets were too small to test for the
present in these data. This indicates that a subject quicklgxistence of high-dimensional chaos. However, a more likely
adjusts her tapping period to the metronome period, but thegxplanation is that the fluctuations have the nature of di-
eliminates the time lagor phase shiftmore slowly through  rected Brownian motion, which is random, rather than cha-
a gradual drift. otic, but which also contains correlations. This explanation is
We also showed that short-term correlations were presenrflso consistent with the conclusion that, in the periodic-
in all of these experiments, and we determined these corretimulus experiments, the time lags between the stimulus
lation lengths. For the periodic-stimulus experiments, thesgones and the response taps are eliminated by a slow directed
results indicate that a subject relies on a fixed number ofirift. Deciding whether or not this is actually the case will
previous taps, rather than a fixed time interval. For the nonrequire a considerable amount of effort, so this is a subject
stimulus experiments, the results are not as clear, but there fgr future study.
some indication that a subject may rely on a fixed time in-
terval for larger tapping periods. ACKNOWLEDGMENT
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